| 1  | Experimental Determination of Solubilities of Magnesium                                           |
|----|---------------------------------------------------------------------------------------------------|
| 2  | Borates: Solubility Constants of Boracite [Mg <sub>3</sub> B <sub>7</sub> O <sub>13</sub> Cl(cr)] |
| 3  | and Aksaite [MgB <sub>6</sub> O <sub>7</sub> (OH) <sub>6</sub> •2H <sub>2</sub> O(cr)]            |
| 4  |                                                                                                   |
| 5  | Yongliang Xiong <sup>1</sup> , Leslie Kirkes, Jandi Knox, Cassie Marrs, and                       |
| 6  | Heather Burton                                                                                    |
| 7  | Sandia National Laboratories (SNL)*                                                               |
| 8  | Carlsbad Programs Group                                                                           |
| 9  | 4100 National Parks Highway, Carlsbad, NM 88220, USA                                              |
| 10 |                                                                                                   |

<sup>&</sup>lt;sup>1</sup> Corresponding author, e-mail: yxiong@sandia.gov.

| 12 | ABSTRACT                                                                                                                                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | In this study, solubility measurements regarding boracite [Mg <sub>3</sub> B <sub>7</sub> O <sub>13</sub> Cl(cr)] and                             |
| 14 | aksaite $[MgB_6O_7(OH)_6 \bullet 2H_2O(cr)]$ from the direction of supersaturation were conducted                                                 |
| 15 | at 22.5 $\pm$ 0.5°C. The equilibrium constant ( $\log_{10} K^0$ ) for boracite in terms of the                                                    |
| 16 | following reaction,                                                                                                                               |
| 17 |                                                                                                                                                   |
| 18 | $Mg_3B_7O_{13}Cl(cr) + 15H_2O(l) \Rightarrow 3Mg^{2+} + 7B(OH)_4^- + Cl^- + 2H^+$                                                                 |
| 19 |                                                                                                                                                   |
| 20 | is determined as $-29.49 \pm 0.39$ (2 $\sigma$ ) in this study.                                                                                   |
| 21 | The equilibrium constant for aksaite according to the following reaction,                                                                         |
| 22 |                                                                                                                                                   |
| 23 | $MgB_6O_7(OH)_6 \cdot 2H_2O(cr) + 9H_2O(l) \Rightarrow Mg^{2+} + 6B(OH)_4^- + 4H^+$                                                               |
| 24 |                                                                                                                                                   |
| 25 | is determined as $-44.41 \pm 0.41$ (2 $\sigma$ ) in this work.                                                                                    |
| 26 | This work recommends a complete set of thermodynamic properties for aksaite at                                                                    |
| 27 | 25°C and 1 bar as follows: $\Delta H_f^0 = -6063.70 \pm 4.85 \text{ kJ-mol}^{-1}$ , $\Delta G_f^0 = -5492.55 \pm 2.32$                            |
| 28 | kJ•mol <sup>-1</sup> , and $S^0 = 344.62 \pm 1.85 \text{ J}$ •mol <sup>-1</sup> •K <sup>-1</sup> . Among them, $\Delta G_f^0$ is derived from the |
| 29 | equilibrium constant for aksaite determined by this study; $\Delta H_f^0$ is from the literature,                                                 |
| 30 | determined by calorimetry; and $S^0$ is computed in the present work from $\Delta G_f^0$ and                                                      |
| 31 | $\Delta {H}_{f}^{0}$ .                                                                                                                            |

33

This investigation also recommends a complete set of thermodynamic properties for boracite at 25°C and 1 bar as follows:  $\Delta H_f^0 = -6575.02 \pm 2.25 \text{ kJ} \cdot \text{mol}^{-1}$ ,

 $\Delta G_f^0 = -6178.35 \pm 2.25 \text{ kJ} \cdot \text{mol}^{-1}$ , and  $S^0 = 253.6 \pm 0.5 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ . Among them,  $\Delta G_f^0$ 34 is derived from the equilibrium constant for boracite determined by this study;  $S^0$  is from 35 the literature, determined by calorimetry; and  $\Delta H_f^0$  is computed in this work from  $\Delta G_f^0$ 36 and  $S^0$ . 37

38 The thermodynamic properties determined in this study can find applications in 39 many fields. For instance, in the field of material science, boracite has many useful 40 properties including ferroelectric and ferroelastic properties. The equilibrium constant of 41 boracite determined in this work will provide guidance for economic synthesis of boracite 42 in an aqueous medium. Similarly, in the field of nuclear waste management, iodide boracite [Mg<sub>3</sub>B<sub>7</sub>O<sub>13</sub>I(cr)] is proposed as a waste form for radioactive <sup>129</sup>I. Therefore, the 43 44 solubility constant for chloride boracite  $[Mg_3B_7O_{13}Cl(cr)]$  will provide the guidance for 45 the performance of iodide boracite in geological repositories. Boracite/aksaite 46 themselves in geological repositories in salt formations may be solubility-controlling 47 phase(s) for borate. Consequently, solubility constants of boracite and aksaite will enable 48 researchers to predict borate concentrations in equilibrium with boracite/aksaite in salt 49 formations.

50

51

### 52 **INTRODUCTION**

53 Boracites with a general formula  $M_3B_7O_{13}X$  (M = Mg, and transition elements Cr, 54 Mn, Fe, Co, Ni, Cu, Zn, or Cd; X = halide, F, Cl., Br, or I) constitute a large group of

| 55 | isomorphous compounds with more than 20 species (Li et al., 2003). Among them, the                                            |
|----|-------------------------------------------------------------------------------------------------------------------------------|
| 56 | boracite end member with Mg and Cl., i.e., Mg <sub>3</sub> B <sub>7</sub> O <sub>13</sub> Cl, is an important borate mineral. |
| 57 | (In the following, unless otherwise noted, boracite refers to the end member with Mg and                                      |
| 58 | Cl for simplicity.) It occurs in evaporate deposits in salt formations (e.g., Phillips, 1947;                                 |
| 59 | Green, 2010; Gao, et al., 2012; Zhang et al., 2013), and the description about its                                            |
| 60 | occurrence appeared in the literature as early as in the nineteen century (Magtear, 1869;                                     |
| 61 | Cadell, 1885), and it is also present in salt lakes (e.g., Heggemann et al., 1994; Zheng,                                     |
| 62 | 1997). In the field of material science, boracites have many useful properties including                                      |
| 63 | ferroelectric and ferroelastic properties (e.g., Torre et al., 1972).                                                         |
| 64 | Aksaite with a structural formula of MgB6O7(OH)6•2H2O(cr) is a magnesium                                                      |
| 65 | borate mineral, which was discovered in 1960's (Clark and Erd, 1963; Dal Negro et al.,                                        |
| 66 | 1971). It is also present in evaporate deposits in salt formations (Valeyev et al., 1973;                                     |
| 67 | Garrett, 1998), and in salt lakes (Li et al., 2012).                                                                          |
| 68 | In the field of nuclear waste management, as boracite and aksaite are present in                                              |
| 69 | evaporate deposits in salt formations mentioned before, they are potentially important to                                     |
| 70 | geological repositories in salt formations. Salt formations are considered to be ideal for                                    |
| 71 | nuclear waste isolation (National Academy of Science, 1957). Recent investigations                                            |
| 72 | have suggested that borate could potentially complex with Nd(III) (Borkowski et al.,                                          |
| 73 | 2010; Xiong, 2017), an analog to Am(III) in chemical behavior. Hence, a comprehensive                                         |
| 74 | understanding of interactions of borate with major ions in brines as well as the potential                                    |
| 75 | solubility-controlling phase(s) for borate is needed to accurately describe the                                               |
| 76 | contributions of borate to the potential solubility of Am(III) in brines in salt formations,                                  |
| 77 | as they contain significant concentrations of borate. In brines associated with salt                                          |

| 78  | formations, they contain high concentrations of chloride along with significant                        |
|-----|--------------------------------------------------------------------------------------------------------|
| 79  | concentrations of boron and magnesium. For instance, at the Waste Isolation Pilot Plant                |
| 80  | (WIPP), a U.S. Department of Energy geological repository for the permanent disposal of                |
| 81  | defense-related transuranic (TRU) waste (U.S. DOE, 1996), the Generic Weep Brine                       |
| 82  | (GWB) and Energy Research and Development Administration Well 6 (ERDA-6),                              |
| 83  | contain high concentrations of chloride, borate and magnesium (Xiong and Lord, 2008).                  |
| 84  | Consequently, in geological repositories in salt formations, the interactions among                    |
| 85  | chloride, borate, and magnesium, will be important to the accurate description of the                  |
| 86  | contributions of borate to the solubility of Am(III) in brines in salt formations.                     |
| 87  | In addition, iodide-boracites, $(M_3B_7O_{13}I)$ , where <i>M</i> represents various divalent          |
| 88  | metal ions), have been proposed as a waste form for radioactive iodine, <sup>129</sup> I, in the field |
| 89  | of nuclear waste management (e.g., Vance et al., 1981).                                                |
| 90  | Thermodynamic properties of boracite is not well known. Anovitz and                                    |
| 91  | Hemingway (2002) listed the Gibbs free energy of formation for boracite from an                        |
| 92  | unpublished source from Khodakovsky, Semenov and Aksaenova (see Page 196, 252 in                       |
| 93  | Anovitz and Hemingway, 2002). Regarding aksaite, Jia et al. (1999) determined its                      |
| 94  | enthalpy of formation using the calorimetric method. However, its Gibbs free energy of                 |
| 95  | formation has not been determined, and therefore its solubility constant is unknown. The               |
| 96  | knowledge of the complete sets of thermodynamic properties for aksaite and boracite will               |
| 97  | be useful to many fields. For this reason, in this work, we determine the solubility                   |
| 98  | constants of boracite and aksaite. Then, based on our solubility constants, we are able to             |
| 99  | provide the complete sets of thermodynamic properties for aksaite and boracite.                        |
| 100 |                                                                                                        |

## EXPERIMENTAL METHODS

In our solubility experiments, we performed the solubility measurements from the
 direction of supersaturation. All chemicals used in our experiment were ACS reagent
 grade.

In our supersaturation experiment, we first placed 250 mL of a 1.0 mol•kg<sup>-1</sup> 106 107 MgCl<sub>2</sub> solution into a glass beaker with a stir bar. Then, 8.5023 grams of H<sub>3</sub>BO<sub>3</sub> was 108 added into the above solution. The solution was well mixed until all of H<sub>3</sub>BO<sub>3</sub> was dissolved. After that, 2.0114 mol•dm<sup>-3</sup> NaOH was dropwise added into the above 109 110 solution to initiate precipitation. Finally, the solution with precipitates was transferred 111 from the glass beaker into a 500 mL plastic bottle for storage of the supersaturation 112 experiment at  $22.5 \pm 0.5^{\circ}$ C. The experiment was not sampled until the experimental 113 duration lasted at least for 970 days. 114 The pH readings were measured with an Orion-Ross combination pH glass 115 electrode, coupled with an Orion Research EA 940 pH meter that was calibrated with 116 three pH buffers (pH 4, pH 7, and pH 10). Negative logarithms of hydrogen-ion 117 concentrations on molar scale (pcH) were determined from pH readings by using 118 correction factors (Hansen, 2001). Based on the equation in Xiong et al. (2010), pcHs are 119 converted to negative logarithms of hydrogen-ion concentrations on molal scale, pH<sub>m</sub>, a 120 notation from Oak Ridge National Laboratory/University of Idaho (e.g., Wood et al., 121 2002).

Solution samples were periodically withdrawn from experimental runs. Before
solution samples were taken, pH readings of experimental runs were first measured. The
sample size was usually 3 mL. After a solution sample was withdrawn from an

| 125 | experiment and filtered with a 0.2 $\mu$ m syringe filter, the filtered solution was then                                |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 126 | weighed, acidified with 0.5 mL of concentrated TraceMetal® grade HNO3 from Fisher                                        |
| 127 | Scientific, and finally diluted to a volume of 10 mL with DI water. If subsequent                                        |
| 128 | dilutions were needed, aliquots were taken from the first dilution samples for the second                                |
| 129 | dilution, and aliquots of the second dilution were then taken for the further dilution.                                  |
| 130 | Boron, sodium and magnesium concentrations of solutions were analyzed with a                                             |
| 131 | Perkin Elmer dual-view inductively coupled plasma-atomic emission spectrometer (ICP-                                     |
| 132 | AES) (Perkin Elmer DV 8300). Calibration blanks and standards were precisely matched                                     |
| 133 | with experimental matrices. The linear correlation coefficients of calibration curves in all                             |
| 134 | measurements were better than 0.9995. The analytical precision for ICP-AES is better                                     |
| 135 | than 1.00% in terms of the relative standard deviation (RSD) based on replicate analyses.                                |
| 136 | Chloride concentrations were analyzed with a DIONEX ion chromatograph (IC)                                               |
| 137 | (DIONEX IC 3000).                                                                                                        |
| 138 | The solid phase identification was performed by using a Bruker AXS, Inc., D8                                             |
| 139 | Advance X-ray diffractometer (XRD) with a Sol-X detector. XRD patterns were                                              |
| 140 | collected using CuK $\alpha$ radiation at a scanning rate of 1.33°/min for a 2 $\theta$ range of 10–90°.                 |
| 141 |                                                                                                                          |
| 142 | EXPERIMENTAL RESULTS                                                                                                     |
| 143 | Figure 1 shows the XRD patterns for our supersaturation experiment with an                                               |
| 144 | initial concentration of 1.0 mol $\cdot$ kg <sup>-1</sup> MgCl <sub>2</sub> solution. Figure 1 shows that boracite along |
| 145 | with aksaite crystallized from the solution. Notice that the peaks characteristic of                                     |

boracite and aksaite, are present in the XRD patterns for our experiment (Figure 1).

| 147 | Experimental results are tabulated in Table 1. In Figure 2, total boron, chloride,                                                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| 148 | magnesium and sodium concentrations as a function of experimental time are displayed                                                 |
| 149 | respectively. From Figure 2, we can see that the equilibrium was established after about                                             |
| 150 | 900 days. The duration of our experiment was long, and it was up to 1,642 days (Table 1,                                             |
| 151 | Figure 2).                                                                                                                           |
| 152 |                                                                                                                                      |
| 153 | THERMODYNAMIC CALCULATIONS, DISCUSSIONS, AND APPLICATIONS                                                                            |
| 154 |                                                                                                                                      |
| 155 | The dissolution reactions for boracite and aksaite, and the equilibrium between                                                      |
| 156 | boracite and aksaite, can be represented by the following reactions,                                                                 |
| 157 |                                                                                                                                      |
| 158 | $Mg_{3}B_{7}O_{13}Cl(cr) + 15H_{2}O(l) \Rightarrow 3Mg^{2+} + 7B(OH)_{4-} + Cl^{-} + 2H^{+} $ (1)                                    |
| 159 |                                                                                                                                      |
| 160 | $MgB_6O_7(OH)_6 \cdot 2H_2O(cr) + 9H_2O(l) \Rightarrow Mg^{2+} + 6B(OH)_4 + 4H^+$ (2)                                                |
| 161 |                                                                                                                                      |
| 160 | $M_{\alpha} = D_{\alpha} = C^{1}(\alpha r) + 10 U^{+} + 11 D(\Omega U) = -2 2 M_{\alpha} D_{\alpha} = O(\Omega U) + 2 U O(\alpha r)$ |
| 162 | $Mg_3B_7O_{13}CI(cr) + 10H + 11B(OH)_4 = 3MgB_6O_7(OH)_6 \cdot 2H_2O(cr)$                                                            |
| 163 | $+ 12H_2O(l) + Cl^-$ (3)                                                                                                             |
| 164 |                                                                                                                                      |
| 165 | Regarding Reaction (1), its equilibrium constant at infinite dilution can be                                                         |
| 166 | expressed as follows,                                                                                                                |
| 167 |                                                                                                                                      |

168 
$$K_1^0 = \frac{(a_{Mg^{2+}})^2 \times (a_{B(OH)_4^-})^7 \times (a_{Cl^-}) \times (a_{H^+})^2}{(a_{H,O})^{15}}$$
(4)

Similarly, the equilibrium constant at infinite dilution for Reaction (2) can be cast asfollows,

172

173 
$$K_2^0 = \frac{(a_{Mg^{2+}}) \times (a_{B(OH)_4^-})^6 \times (a_{H^+})^4}{(a_{H,O})^9}$$
(5)

174

175 Finally, the equilibrium constant at infinite dilution for Reaction (3) is written as follows,176

177 
$$K_{3}^{0} = \frac{(a_{H_{2}O})^{12} \times (a_{CI^{-}})}{(a_{H^{+}})^{10} \times (a_{B(OH)_{4}})^{11}}$$
(6)

178

179 In Equations (4) through (6),  $a_i$  is an activity of the *i*-th species calculated with a 180 thermodynamic model;  $a_{H_2O}$  activity of water.

# 181Activities of $Mg^{2^+}$ , $B(OH)_{4^-}$ , $C\Gamma$ , $H^+$ and water in the experimental system are182calculated by using the computer code EQ3/6 Version 8.0a (Wolery et al., 2010; Xiong,1832011a). The database used for calculations was DATA0.FM2 (Xiong and Domski,1842016), which utilizes the Pitzer model for calculations of activity coefficients of aqueous185species with updates for borate chemistry from Xiong et al. (2013).186Based on the activities calculated using EQ3/6 Version 8.0a, the log $K_1^0$ and187log $K_2^0$ at infinite dilution are calculated in accordance with Equations (4) and (5)

188 (Table 2). The equilibrium constant for Reaction (3) can be derived from  $\log K_1^0$  and 189  $\log K_2^0$ , or calculated from Equation (6).

190 The equilibrium constants for boracite and aksaite determined by this study 191 provide the best opportunity in evaluating the Gibbs free energies of these phases from 192 the unpublished source and estimates in the literature. According to the unpublished source, Khodakosky, Semenov and Aksaenova calculated the  $\Delta G_f^0$  of boracite as -6178.4 193 kJ•mol<sup>-1</sup> (cited in Anovitz and Hemingway, 2002), based on their unpublished 194 195 calorimetric data for the enthalpy and entropy of boracite. The equilibrium constant  $(\log_{10} K^0)$  regarding Reaction (1) calculated from the  $\Delta G_f^0$  from Khodakosky, Semenov 196 197 and Aksaenova is -29.50 (Table 3). In the calculations, the Gibbs free energies for other 198 species in Reaction (1) are taken from the NBS Thermodynamic Tables (Wagman et al., 199 1982), as Anovitz and Hemingway (2002) implied that the thermodynamic properties of 200 boracite from Khodakosky, Semenov and Aksaenova are consistent with the NBS Thermodynamic Tables. In comparison with  $\log_{10} K^0$  of  $-29.50 \pm 0.39$  determined by 201 this study, the value (-29.50) calculated from the  $\Delta G_f^0$  from Khodakosky, Semenov and 202 203 Aksaenova is in excellent agreement with our value. Anovitz and Hemingway (2002) estimated the  $\Delta G_f^0$  of boracite as -6184.7 204 kJ•mol<sup>-1</sup>. The equilibrium constant in 10-based logarithmic unit calculated from their 205 estimated  $\Delta G_f^0$  is -30.61. This value differs from our experimental value by about one 206

207 order of magnitude.

208 Li et al. (2000) calculated the  $\Delta G_f^0$  of aksaite as -5495.64 kJ•mol<sup>-1</sup>, based on 209 their group contribution method for hydrated borates. The equilibrium constant

210  $(\log_{10} K^0)$  regarding Reaction (2) calculated from the  $\Delta G_f^0$  from Li et al. (2002) is -44.95 211 (Table 3). In the calculations, the Gibbs free energies for other species in Reaction (2) 212 are taken from the NBS Thermodynamic Tables (Wagman et al., 1982), as the group 213 contribution method they developed is consistent with the NBS Thermodynamic Tables. 214 Interestingly, this value (-44.95) compares favorably with our experimental value of 215 -44.41 ± 0.41.

Anovitz and Hemingway (2002) estimated the  $\Delta G_f^0$  of aksaite as  $-5569 \text{ kJ} \cdot \text{mol}^{-1}$ . 216 Based on this value for  $\Delta G_f^0$ , the equilibrium constant for Reaction (2) is calculated to be 217 218 -57.81 (Table 3). In the calculations, the Gibbs free energies for other species in 219 Reaction (2) are taken from the NBS Thermodynamic Tables (Wagman et al., 1982), as 220 the method of Anovitz and Hemingway (2002) was developed based on the database of 221 the NBS Thermodynamic Tables. Obviously, the equilibrium constant (-57.81) for Reaction (2) according to the  $\Delta G_f^0$  of aksaite estimated from the method of Anovitz and 222 223 Hemingway is too low in comparison with our experimental value ( $-44.41 \pm 0.41$ ) and the value (-44.95) calculated from the  $\Delta G_f^0$  from Li et al. (2000). 224

In accordance with the equilibrium constants for boracite and aksaite determined in this study, we recommend the complete sets of thermodynamic properties for boracite and aksaite, in combination with  $S^0$  for boracite from Khodakovsky, Semenov and Aksaenova (cited in Anovitz and Hemingway) and  $\Delta H_f^0$  for aksaite from Jia et al. (1999) (Table 4).

Anovitz and Hemingway (2002) estimated the enthalpy  $(\Delta H_f^0)$  and Gibbs free energy  $(\Delta G_f^0)$ , of formation, for aksaite based on their estimation method. The

| 232 | estimation method of Anovitz and Hemingway (2002) for borates was developed from                                          |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| 233 | the approaches of Robinson and Haas (1983), Chermak and Rimstidt (1989), and                                              |
| 234 | Hemingway (1982). These approaches are mainly related to silicate minerals.                                               |
| 235 | Anovitz and Hemingway (2002) estimated the $\Delta H_f^0$ and $\Delta G_f^0$ of aksaite as -6135                          |
| 236 | kJ•mol <sup><math>-1</math></sup> and $-5569$ kJ•mol <sup><math>-1</math></sup> (Table 4), respectively.                  |
| 237 | Jia et al. (1999) experimentally determined the $\Delta H_f^0$ of aksaite as -6063.65 ±                                   |
| 238 | 4.85 kJ•mol <sup><math>-1</math></sup> (Table 4). In comparison, the estimated value provided by                          |
| 239 | Anovitz and Hemingway (2002) differs from the experimental value of Jia et al. (1999)                                     |
| 240 | by 71 kJ•mol <sup>-1</sup> . Li et al. (2000) calculated the $\Delta H_f^0$ of aksaite as -6007.00 kJ•mol <sup>-1</sup> . |
| 241 | The $\Delta H_f^0$ calculated by Li et al. (2000) differs from the experimental value by 56                               |
| 242 | kJ•mol <sup>-1</sup> . In addition, Li et al. (2000) also calculated the $\Delta G_f^0$ of aksaite to be -5495.64         |
| 243 | kJ•mol <sup>-1</sup> . The $\Delta H_f^0$ and $\Delta G_f^0$ values calculated by Li et al. (2000) are based on the       |
| 244 | group contribution method they developed for hydrated borates. The $\Delta G_f^0$ value                                   |
| 245 | estimated by Anovitz and Hemingway (2002) differs from the calculated value of Li et al                                   |
| 246 | (1999) by 73 kJ•mol <sup>-1</sup> .                                                                                       |
| 247 | The $\Delta G_f^0$ of aksaite computed from the equilibrium constant determined in this                                   |
| 248 | study is $-5492.55 \pm 2.32 \text{ kJ} \cdot \text{mol}^{-1}$ . In the computation, the thermodynamic properties for      |
| 249 | the species except aksaite in Reaction (2) are taken from the NBS Tables (Wagman et al.,                                  |
| 250 | 1982). This is done in order to be consistent with the thermodynamic database of                                          |
| 251 | Anovitz and Hemingway (2002), Jia et al. (1999), and Li et al. (2002); all of them are                                    |
| 252 | consistent with the NBS Tables. It is clear from Table 4 that the $\Delta G_f^0$ value for aksaite                        |

| 253 | derived from the equilibrium constant determined by this work is in very good agreement                         |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 254 | with that from Li et al. (2000), but differs significantly from that from Anovitz and                           |
| 255 | Hemingway (2002). Therefore, it seems that the method of Li et al. (2000) is more                               |
| 256 | reliable for estimating thermodynamic properties of hydrated borates.                                           |
| 257 | In summary, the equilibrium constant for boracite determined by this study is in                                |
| 258 | excellent agreement with the $\Delta G_f^0$ derived from the calorimetric measurements, from                    |
| 259 | Khodakovsky, Semenov and Aksaenova. The equilibrium constant for aksaite                                        |
| 260 | determined in this work is in close agreement with the $\Delta G_f^0$ calculated from the group                 |
| 261 | contribution method (Li et al., 2002). The good agreement between the equilibrium                               |
| 262 | measurements and calorimetric measurements for boracite also provides the additional                            |
| 263 | credits and independent validation for the aqueous chemistry model including borate                             |
| 264 | species that has been employed for equilibrium calculations.                                                    |
| 265 | The complete sets of thermodynamic properties for boracite and aksaite may find                                 |
| 266 | applications in many fields. For instance, aksaite double salt has been observed in Da                          |
| 267 | Chaidam Salt Lake and Xiao Chaidam Salt Lake (Li et al., 2012). Therefore, the                                  |
| 268 | thermodynamic properties of aksaite can be used to elucidate the conditions for the                             |
| 269 | formation of aksaite in those salt lakes, including temperature variations.                                     |
| 270 | Boracite appears in salt formations in various assemblages. In the salt formation                               |
| 271 | in the Khorat basin in Thailand, boracite co-exists with carnallite (KMgCl <sub>3</sub> •6H <sub>2</sub> O) and |
| 272 | bischofite (MgCl <sub>2</sub> •6H <sub>2</sub> O) (Le, 1986).                                                   |
| 273 |                                                                                                                 |

274 SUMMARY

| 275 | In this study, the equilibrium constants for boracite and aksaite have been               |
|-----|-------------------------------------------------------------------------------------------|
| 276 | determined in supersaturation experiments. The equilibrium constant for boracite          |
| 277 | obtained in this study based on the equilibrium aqueous chemistry model including borate  |
| 278 | species is in excellent agreement with the value calculated from the thermodynamic        |
| 279 | properties of boracite determined by Khodakovsky, Semenov and Aksaenova using the         |
| 280 | calorimetric method. The equilibrium constant for aksaite determined in this work is also |
| 281 | in close agreement with the $\Delta G_f^0$ calculated from the group contribution method  |
| 282 | (Li et al., 2002). Therefore, our equilibrium measurements are consistent with the        |
| 283 | calorimetric measurement.                                                                 |
| 284 | Based on our equilibrium measurements, we recommend the complete sets of                  |
| 285 | thermodynamic properties for boracite and aksaite, which are consistent with the          |
| 286 | calorimetric measurements.                                                                |
| 287 |                                                                                           |

## 289 ACNOWLEDGEMENTS

290 Sandia National Laboratories is a multimission laboratory operated by National 291 Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of 292 Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear 293 Security Administration under contract DE-NA-0003525. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the 294 295 U.S Department of Energy. We are grateful to Shelly Nielsen, Lindsay Day, Diana 296 Goulding, Brittany Hoard, Chase Kicker, Danelle Morrill, William Sullvan, Mathew 297 Stroble, Kira Vincent, and Yoni Xiong for their laboratory assistance.

299 REFERENCES

- 300
- Anovitz, L.M., and Hemingway, B.S., 2002. Thermodynamics of boron minerals:
  Summary of structural, volumetric and thermochemical data. In Grew, E.S., and
  Anovitz, L.M., Editors, Boron: Mineralogy, Petrology, and Geochemistry, Reviews
  in Mineralogy, Volume 33, p. 181-262, .2<sup>nd</sup> Printing, Mineralogical Society of
  America, Washington, D.C., USA.
- Borkowski, M., Richmann, M., Reed, D.T., and Xiong, Y.-L. (2010) Complexation of
   Nd(III) with Tetraborate Ion and Its Effect on Actinide (III) Solubility in WIPP
   Brine. Radiochimica Acta, 98, 577–582.
- Braitsch, O., 1971. Other Components of Salt Deposits. In Salt Deposits Their Origin and
   Composition (pp. 215-245). Springer Berlin Heidelberg.
- Cadell, H.M., 1885. The salt deposits of Stassfurt. *Transactions of the Edinburgh Geological Society*, 5(1), pp.92-103.
- 313 Chermak, J.A., and Rimstidt, J.D., 1989. Estimating the thermodynamic properties
- 314  $(\Delta G_f^0 \text{ and } \Delta H_f^0)$  of silicate minerals at 298 K from the sum of polyhedral
- 315 contributions. American Mineralogist 74:1023-1031.
- Clark, J.R. and Erd, R.C., 1963. Probable chemical formula of aksaite, a new hydrated
   magnesium borate. *American Mineralogist*, 48(7-8), p.930.
- 318 Dal Negro, A., Ungaretti, L., and Sabelli, C., 1971. Crystal structure of aksaite.
   319 *American Mineralogist*, 56(9-10), p.1553
- Garrett, D.E., 1998. Borates: Handbook of deposits, processing, properties, and use.
  Academic Press.
- Gao, X., Cai, K.Q., Li, D.R., Peng, Q., Fang, Q.F. And Qin, H., 2012. Mineralogical and
   geochemical characteristics and genesis of the potassium-magnesium salt deposit in
   Khammouan Province, Laos [J]. *Acta Petrologica Et Mineralogica*, 4, p.011.
- Green, D.I. and Freier, M.D., 2010. The Boulby mine. *The Mineralogical Record*, 41(1),
   pp.S53-S53.
- Heggemann, H., Helmcke, D. and Tietze, K.W., 1994. Sedimentary evolution of the
  Mesozoic Khorat Basin in Thailand. *Zentralblatt für Geologie und Paläontogie, Teil I*, pp.11-12.
- Hemingway, B.S., 1982. Thermodynamic properties of calcium aluminates. Journal of
   Physical Chemistry 2802-2803.

- Jia, Y.-Z, Li, J., Gao, S.-Y., and Xia, S.-P., 1999. Thermochemistry of aksaite. *The Journal of Chemical Thermodynamics*, *31*(12), pp.1605-1608.
- Le Thi Hoe (1986): Petrographical character of rocks salt in the Vien- tiane basin, Laos. Intergeo, GDMG; Vietnam.
- Li, J., Li, B. and Gao, S., 2000. Calculation of thermodynamic properties of hydrated
  borates by group contribution method. *Physics and Chemistry of Minerals*, 27(5),
  pp.342-346.
- Li, D., Xu, Z.J., Wang, Z.H., Geng, D.Y., Zhang, J.S., Zhang, Z.D., Yuan, G.L. and Liu,
  J.M., 2003. Synthesis and characterization of M–Cl (M= Fe, Co, Ni) boracites. *Journal of alloys and compounds*, *351*(1), pp.235-240.
- Li, X., Liu, Z., Gao, S. and Xia, S., 2012. Geochemical hypothesis for hydrated
  magnesium borate deposit in Salt Lake, NW China. *Environmental Earth Sciences*,
  66(5), pp.1431-1438.
- Li, F., Lin, C.X., Yang, L.J., Guo, Y.F., Wang, S.Q. and Deng, T.L., 2013. Synthesis and
  Thermodynamic Properties of Magnesium Borates. In *Advanced Materials Research*(Vol. 791, pp. 220-223). Trans Tech Publications.
- Magtear, B., 1869. The salt deposits at stassfurt. *Journal of the Franklin Institute*, 87(6),
   pp.408-413.
- National Academy of Sciences Committee on Waste Disposal. 1957. *The Disposal of Radioactive Waste on Land*. Publication 519. Washington, DC: National Academy
   of Sciences–National Research Council.
- Phillips, F.C., 1947. Oceanic salt deposits. *Quarterly Reviews, Chemical Society*, 1(1),
   pp.91-111.
- Robinson, G.R., Jr., Haas, J.L., Jr., 1983. Heat capacity, relative enthalpy, and
  calorimetric entropy of silicate minerals: An empirical method of prediction.
  American Mineralogist 68:541-553.
- Torre, L.P., Abrahams, S.C. and Barns, R.L., 1972. Ferroelectric and ferroelastic
   properties of Mg-Cl-Boracite. *Ferroelectrics*, 4(1), pp.291-297.
- U.S. DOE (1996) Compliance Certification Application 40 CFR Part 191 Subpart B and
   C U.S. Department of Energy Waste Isolation Pilot Plant. Appendix SOTERM.
   DOE/CAO 1996-2184. Carlsbad, NM: U.S. DOE Carlsbad Area Office.
- Valeyev, R.N., Ozol, A.A. and Tikhvinskiy, I.N., 1973. Genetic characteristics of the
   halide-sedimentational type of borate deposits. *International Geology Review*, 15(2),
   pp.165-172.

- Vance, E.R., Agrawal, D.K., Scheetz, B.E., Pepin, J.G., Atkinson, S.D. and White, W.B.,
  1981. *Ceramic phases for immobilization of/sup 129/I.[Sodalite and boracite]* (No.
  DOE/ET/41900-9; ESG-DOE-13354). Rockwell International Corp., Canoga Park,
  CA (USA). Energy Systems Group; Pennsylvania State Univ., University Park
  (USA). Materials Research Lab.
- Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H. and Halow, I., 1982. *The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units.* National Standard Reference Data System.
- Wolery, T.W., Xiong, Y.-L., and Long, J. (2010) Verification and Validation
  Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry,
  Document Version 8.10. Carlsbad, NM: Sandia National laboratories. ERMS
  550239.
- Wood, S.A., Palmer, D.A., Wesolowski, D.J. and Bénézeth, P.A.S.C.A.L.E., 2002. The
  aqueous geochemistry of the rare earth elements and yttrium. Part XI. The solubility
  of Nd(OH)<sub>3</sub> and hydrolysis of Nd<sup>3+</sup> from 30 to 290°C at saturated water vapor
  pressure with in-situ pHm measurement. *Water–rock interactions, ore deposits, and environmental geochemistry: a tribute to David Crerar, Special Publication, 7*,
  pp.229-256.
- Xiong, Y.-L. (2011a) WIPP Verification and Validation Plan/Validation Document for
  EQ3/6 Version 8.0a for Actinide Chemistry, Revision 1, Document Version 8.20.
  Supersedes ERMS 550239. Carlsbad, NM. Sandia National Laboratories. ERMS
  555358.
- Xiong, Y.-L., 2014. Sandia National Laboratories Waste Isolation Pilot Plant (WIPP)
   Analysis AP-155, Revision 3, Analysis Plan for Derivation of Thermodynamic
   Properties Including Pitzer Parameters for Solubility Studies of Borate. Carlsbad,
   NM: Sandia National Laboratories. ERMS 562807.
- Xiong, Y., 2017. Solution Chemistry for Actinide Borate Species to High Ionic
   Strengths: Equilibrium Constants for AmHB<sub>4</sub>O<sub>7</sub><sup>2+</sup> and AmB<sub>9</sub>O<sub>13</sub>(OH)<sub>4</sub>(cr) and Their
   Importance to Nuclear Waste Management. *MRS Advances*, 2, 741–746.
- Xiong, Y.-L., Domski, P.S., 2016. "Updating the WIPP Thermodynamic Database,
  Revision 1, Supersedes ERMS 565730." Carlsbad, NM: Sandia National
  Laboratories. ERMS 566047.
- Xiong, Y.-L., and Lord, A.C.S. (2008) Experimental investigations of the reaction path
   in the MgO-CO<sub>2</sub>-H<sub>2</sub>O system in solutions with ionic strengths, and their
   applications to nuclear waste isolation. Applied Geochemistry, 23, 1634–1659.
- Xiong, Y.-L., Deng, H.-R., Nemer, M., and Johnsen, S. (2010) Experimental
   determination of the solubility constant for magnesium chloride hydroxide hydrate

- 403 (Mg<sub>3</sub>Cl(OH)<sub>5</sub>·4H<sub>2</sub>O), phase 5) at room temperature, and its importance to nuclear
  404 waste isolation in geological repositories in salt formations. Geochimica et
  405 Cosmochimica Acta, 74, 4605-46011.
- Xiong, Y., Kirkes, L. and Westfall, T., 2013. Experimental determination of solubilities
  of sodium tetraborate (borax) in NaCl solutions, and a thermodynamic model for the
  Na-B(OH)<sub>3</sub>-Cl-SO<sub>4</sub> system to high-ionic strengths at 25°C. *American Mineralogist*,
  98(11-12), pp.2030-2036.
- Zhang, X., Ma, H., Ma, Y., Tang, Q. and Yuan, X., 2013. Origin of the late Cretaceous
  potash-bearing evaporites in the Vientiane Basin of Laos: δ 11 B evidence from
- 412 borates. *Journal of Asian Earth Sciences*, 62, pp.812-818.
- Zheng, M.-P., 1997. Classification of Saline Lakes and Types of Mineral Deposit. In *An Introduction to Saline Lakes on the Qinghai*—*Tibet Plateau* (pp. 79-84). Springer
- 415 Netherlands.
- 416

|                     |              |                   | Molal total<br>Magnesium               | Molal total boron                     | Molal total<br>sodium                  | Molal total chloride concentrations, |
|---------------------|--------------|-------------------|----------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------|
|                     | Experimental |                   | concentrations,                        | concentrations,                       | concentrations.                        | $m_{\Sigma Cl}, mol \cdot kg^{-1}$   |
| Experimental Number | time, days   | pH <sub>m</sub> * | $m_{\Sigma Mg}$ , mol•kg <sup>-1</sup> | $m_{\Sigma B}$ , mol•kg <sup>-1</sup> | $m_{\Sigma Na}$ , mol•kg <sup>-1</sup> |                                      |
| SYN-Boracite        | 970          | 8.85              | 8.69E-01                               | 5.21E-01                              | 3.28E-01                               | 1.74                                 |
|                     | 1217         | 8.90              | 8.52E-01                               | 5.85E-01                              | 3.26E-01                               | 1.74                                 |
|                     | 1279         | 8.82              | 8.66E-01                               | 6.03E-01                              | 2.98E-01                               | 1.75                                 |
|                     | 1302         | 8.83              | 8.63E-01                               | 5.89E-01                              | 3.30E-01                               | 1.76                                 |
|                     | 1335         | 8.81              | 8.58E-01                               | 5.66E-01                              | N/A <sup>A</sup>                       | 1.76                                 |
|                     | 1483         | 8.82              | 8.58E-01                               | 5.10E-01                              | N/A <sup>A</sup>                       | 1.79                                 |
|                     | 1595         | 8.86              | 8.66E-01                               | 4.88E-01                              | 3.09E-01                               | 1.79                                 |
|                     | 1642         | 8.87              | 8.74E-01                               | 5.29E-01                              | 3.20E-01                               | 1.79                                 |

|  | Table 1. | Experimental | results | produced | in this | study at | $22.5 \pm 0$ | 0.5 °C. |
|--|----------|--------------|---------|----------|---------|----------|--------------|---------|
|--|----------|--------------|---------|----------|---------|----------|--------------|---------|

\*pcH are first calculated based on pH readings and correction factors for MgCl<sub>2</sub> solutions from Hansen (2001), and then pcH are converted to pH<sub>m</sub> based on the equation from Xiong et a. (2010). As the experimental solutions contain significant amounts of sodium and borate as well as the supporting medium, MgCl<sub>2</sub>, the pH<sub>m</sub>'s calculated based on the correction factor for pure MgCl<sub>2</sub> might contain some additional experimental uncertainties. The uncertainties for pH<sub>m</sub> by using the correction factor for pure MgCl<sub>2</sub> are estimated to be less than  $\pm$  0.08 according to the comparison with the correction factors for NaCl used in Xiong (2008) at the ionic strengths of the experiments in this work. In the thermodynamic calculations, the uncertainties include those for pH<sub>m</sub>. <sup>A</sup> In the corresponding EQ3NR input files, the sodium concentration at 1,302 days was used.

Table 2. Equilibrium constants at infinite dilution for boracite and aksaite at 25°C and 1bar determined in this study.

| Reaction                                                                              | $\log_{10} K^{0}$ <sup>A, B</sup> |
|---------------------------------------------------------------------------------------|-----------------------------------|
| $Mg_3B_7O_{13}Cl(cr) + 15H_2O(l) \Rightarrow 3Mg^{2+} + 7B(OH)_4^- + Cl^- + 2H^+$     | $-29.50 \pm 0.39 \ (2\sigma)$     |
| $MgB_6O_7(OH)_6 \bullet 2H_2O(cr) + 9H_2O(l) \Rightarrow Mg^{2+} + 6B(OH)_4^- + 4H^+$ | $-44.41 \pm 0.41$ (2 $\sigma$ )   |
| $Mg_{3}B_{7}O_{13}Cl(cr) + 10H^{+} + 11B(OH)_{4}^{-} \rightleftharpoons$              | $103.90 \pm 0.57 (2\sigma)$       |
| $3MIgB_6U_7(UH)_6 \cdot 2H_2U(Cr) + 12H_2U(I) + CI$                                   |                                   |

<sup>A</sup> The equilibrium constants were calculated based on all of the experimental data tabulated in Table 1. The uncertainty in terms of  $2\sigma$  includes that for the small extrapolation from 22.5°C to the standard temperature of 25°C, using the equation,

 $\Delta G_T^o = \Delta G_{298.15}^o - (T - 298.15) \Delta S_{298.15}^o + \int_{298.15}^T \Delta C_p^o dT - T \int_{298.15}^T \Delta C_p^o d \ln T$ , assuming that the heat capacity change is zero in this temperature range.

<sup>B</sup> Notice that the EQ3/6 files used for calculations of activities of H<sup>+</sup>, Mg<sup>2+</sup>, B(OH)<sub>4</sub><sup>-</sup>, Cl<sup>-</sup> and activities of water for extrapolation to infinite dilution, are internally, electronically archived under "/nfs/data/CVSLIB/WIPP\_EXTERNAL/ap155/Files". It is conducted under Task 1 in AP-155 (Xiong, 2014).

Table 3. Equilibrium constants at infinite dilution for boracite and aksaite at 25°C and 1bar calculated from the Gibbs free energies from the literature.

| Reaction                                                                                     | $\log_{10} K^0$     |
|----------------------------------------------------------------------------------------------|---------------------|
| $Mg_3B_7O_{13}Cl(cr) + 15H_2O(l) \Rightarrow 3Mg^{2+} + 7B(OH)_4 + Cl^- + 2H^+$              | -29.50 <sup>A</sup> |
| $Mg_{3}B_{7}O_{13}Cl(cr) + 15H_{2}O(l) \Rightarrow 3Mg^{2+} + 7B(OH)_{4-} + Cl^{-} + 2H^{+}$ | -30.61 <sup>B</sup> |
| $MgB_6O_7(OH)_6 \cdot 2H_2O(cr) + 9H_2O(l) \Rightarrow Mg^{2+} + 6B(OH)_4 + 4H^+$            | -44.95 <sup>C</sup> |
| $MgB_6O_7(OH)_6 \bullet 2H_2O(cr) + 9H_2O(l) = Mg^{2+} + 6B(OH)_4^- + 4H^+$                  | -57.80 <sup>B</sup> |

<sup>A</sup> The equilibrium constant was calculated from the  $\Delta G_f^0$  from Khodakovsky, Semenov and Aksaenova (unpublished data, cited by Anovitz and Hemingway. 2002), consistent with the NBS Thermodynamic Tables (Wagman et al., 1982). In Khodakovsky, Semenov and Aksaenova,  $\Delta G_f^0$  was calculated from the  $\Delta H_f^0$  and  $S^0$ data measured with the calorimetric method.

- <sup>B</sup> The equilibrium constant was calculated from the estimated  $\Delta G_f^0$  from Anovitz and Hemingway (2002), consistent with the NBS Thermodynamic Tables (Wagman et al., 1982).
- <sup>C</sup> The equilibrium constant was calculated from the estimated  $\Delta G_f^0$  from Li et al. (2000), consistent with the NBS Thermodynamic Tables (Wagman et al., 1982).

| Species  | $\Delta H_{f}^{0}$ , | $\Delta G_{f}^{0}$ , | $S^0$                               | References and Remarks     |
|----------|----------------------|----------------------|-------------------------------------|----------------------------|
|          | kJ•mol <sup>-1</sup> | kJ•mol <sup>-1</sup> | $J \bullet mol^{-1} \bullet K^{-1}$ |                            |
| Aksaite  | -6135                | -5569                | 361                                 | Anovitz and Hemingway      |
|          |                      |                      |                                     | (2002). See footnote A     |
| Aksaite  | -6063.65             | -5495.64             | 353.64                              | Jia et al. (1999). See     |
|          | $\pm 4.85$           |                      |                                     | footnote B                 |
| Aksaite  | -6007.00             | -5495.64             | N/A                                 | Li et al. (1999). See      |
|          |                      |                      |                                     | footnote C                 |
| Aksaite  | -6063.65             | -5493.16             | 346.69                              | This work. See footnote D. |
|          | $\pm 4.85$           | $\pm 2.16$           | $\pm 1.85$                          |                            |
| Boracite | -6575.0              | -6178.4              | 253.6                               | Khodakovsky, Semenov and   |
|          | ± 9                  | ± 9                  | $\pm 0.5$                           | Aksaenova (unpublished     |
|          |                      |                      |                                     | data, cited by Anovitz and |
|          |                      |                      |                                     | Hemingway. 2002). See      |
|          |                      |                      |                                     | footnote E.                |
| Boracite | -6565.3              | -6184.7              | 307                                 | Anovitz and Hemingway      |
|          |                      |                      |                                     | (2002). See footnote F.    |
| Boracite | -6575.93             | -6179.25             | 253.6                               | This work. See footnote G. |
|          | $\pm 2.03$           | $\pm 2.02$           | $\pm 0.5$                           |                            |

Table 4. Thermodynamic properties of aksaite and boracite at 298.15 K and 1 bar

<sup>A</sup> All properties were estimated.

<sup>B</sup> Enthalpy was experimentally determined. Gibbs free energy was calculated using the group contribution method of Li et al. (1999). Entropy was calculated from experimental enthalpy and estimated Gibbs free energy.

- <sup>C</sup> All properties were estimated.
- <sup>D</sup> Enthalpy is from the experimental value of Jia et al. (1999) using the calorimetric method. Gibbs free energy was computed from the experimentally determined equilibrium constant from this work. Entropy is calculated from the experimental enthalpy from Jia et al. (1999) and the derived Gibbs free energy from the experimental equilibrium constant from this work.

<sup>E</sup> Unpublished data from Khodakovsky, Semenov and Aksaenova using the calorimetric method (cited by Anovitz and Hemingway. 2002).

<sup>F</sup> All properties were estimated.

<sup>G</sup> Entropy is from the experimental value of Khodakovsky, Semenov and Aksaenova using the calorimetric method (cited by Anovitz and Hemingway. 2002). Gibbs free

energy was computed from the experimentally determined equilibrium constant from this work. Enthalpy is calculated from the experimental enthalpy from Khodakovsky, Semenov and Aksaenova using the calorimetric method (cited by Anovitz and Hemingway. 2002) and the derived Gibbs free energy from the experimental equilibrium constant from this work.

# **Figure Captions**

Figure 1. XRD patterns of the solid phases in the experiments. Notice that the vertical lines in pink are the reference peaks of boracite, and the vertical lines in red are the reference peaks of aksaite. There are two reference standard for boracite. One is from the online database, RRUFF (<u>http://rruff.info/</u>), accessed on February 9, 2017, and the other is from the database of <u>the International Centre for Diffraction Data, ICDD</u>. The reference peaks for boracite from ICDD are represented by the vertical lines in pink, and the reference peaks for boracite from RRUFF are represented by the pattern in blue.

Figure 2. A plot showing experimental total boron, chloride, magnesium and sodium concentrations as a function of experimental time.



Figure 1.



Figure 1. Duplicate



Figure 2.